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Abstract
We apply the exact numerical diagonalization technique to study two interacting
electrons in a one-dimensional parabolic quantum dot. We consider a modified
Coulomb interaction potential between the electrons with a truncation parameter
that serves to regularize the behaviour of the bare Coulomb potential in one
dimension. We report the dependence of ground and excited state energies
for several values of the truncation parameter as the strength of electronic
correlations is varied relative to the confinement energy. The similarity of this
quantum dot system to the ammonia molecule is pointed out.

During the past years, the application of new and extraordinary experimental tools to
nanoscience has generated great interest in some special semiconductor electronic systems,
called quantum dots. Quantum dots are localized systems generally fabricated by applying a
lateral confining potential to a two-dimensional (2D) electron system [1–6]. Quantum dots
can contain anything from a single electron to thousands of electrons, and much of their
behaviour can be precisely tuned by using standard nanofabrication methods. There is a strong
interest in their study both from the technological and theoretical point of view. From the
technological point of view, quantum dots offer the potential to build faster electronic devices,
such as single-electron transistors. From the theoretical point of view, they represent a unique
opportunity to study fundamental quantum phenomena in a tunable atomic-like set-up and this
is the reason why, sometimes, they are referred to as artificial atoms. Studies of quantum dots
even with as few as two electrons pose many challenges, for the simple reason that, sometimes,
standard techniques of condensed matter physics, such as Hartree–Fock methods, are not
sufficiently accurate. Therefore, an ‘exact’ quantum mechanical treatment is needed, and
inevitably this requires use of numerical methods. Two ‘exact’ (in the numerical sense) methods
have been successfully applied to quantum dots: one is the exact numerical diagonalization
technique [7–12], and the other one is the quantum Monte Carlo (QMC) method [13–16].
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A quantum dot consisting of two interacting electrons (N = 2) in a parabolic confinement
potential constitutes the simplest system in which we can study the set-up of electronic
correlations. Despite the simplicity, a lot of useful information can be extracted from the study
of this small system, since its behaviour is a good qualitative benchmark to understand larger
structures.

A particular motivation for the study of such quantum dots is their relevance to the field
of quantum computing [17–20], especially after being shown that two-electron quantum dots
have the potential to form the basis of scalable qubits [21] in a future quantum computer.

Generally speaking, a quantum dot is associated with confined and strongly correlated
electronic systems in 2D. The first pioneering work on such systems is due to Bryant [22] in
which the electronic structure of up to N � 6 electrons confined in a 2D infinite rectangular-
well potential was calculated. A Coulomb potential screened by the background dielectric
constant was chosen as the form of the electron–electron interaction. In particular, the problem
of two interacting electrons in a 2D parabolic confinement potential both in the absence
and in the presence of a perpendicular magnetic field has previously been studied by using
several methods [8, 23–28]. The exact closed-form solution for the problem of two interacting
electrons in both uniform magnetic field and external 2D parabolic potential has been recently
reported [29]. The problem of two electrons in a three-dimensional (3D) parabolic confinement
potential has also been studied [30, 31].

The objective of the present work is to study two interacting electrons in a one-dimensional
(1D) parabolic quantum dot by using the exact numerical diagonalization technique. Because
of the peculiarities of the bare Coulomb potential in 1D, instead of the bare Coulomb potential,
we consider a truncated Coulomb potential of the form

Vδ(|x1 − x2|) = e2

√|x1 − x2|2 + δ2
, (1)

where −e(e > 0) is the electron’s charge and δ is the truncation parameter which regularizes
the bare Coulomb potential at |x1 − x2| = 0. At large distances the truncated Coulomb
interaction behaves as a bare Coulomb potential. Such a form of the electron–electron potential
has been previously considered in a study of up to four interacting electrons in a 1D infinite
square-well potential [32], where the truncation parameter is interpreted as a measure of the
width of the electron wave function in the transverse direction.

The choice made in equation (1) is motivated by studies of 3D quantum dots with
confinement potential of the form U(�r) = U2D(x, y)+Uz(z), where the parabolic confinement
in the third dimension, Uz(z), is weaker than the 2D parabolic confinement, U2D(x, y)
and �r = (x, y, z). When the confinement frequency, ω, in the third dimension is much
smaller than the 2D confinement frequency, the two-electron wavefunction can be written
as �(�r1, �r2) = �2D(x1, y1, x2, y2)�z(z1, z2). After integrating out the 2D coordinates, the
effective 1D electron–electron interaction becomes

U1D(z1, z2) = e2
∫

d2r1

∫
d2r2

|�2D(x1, y1, x2, y2)|2√|x1 − x2|2 + |y1 − y2|2 + |z1 − z2|2
. (2)

This expression is of Coulomb form when |z1 − z2| → ∞, but does not diverge when z1 = z2.
The non-singular potential in equation (1) is a simple and accurate phenomenological choice
that represents such behaviour.

Because the problem under consideration is a 1D problem, without loss of generality, the
1D coordinate is referred to as the x coordinate. Therefore, we write the Hamiltonian describing
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two interacting electrons in a 1D parabolic quantum dot as

Ĥ =
2∑

i=1

[
p̂2

i

2m
+ m

2
ω2 x2

i

]
+ Vδ(|x1 − x2|), (3)

where p̂i and xi are respectively the 1D momentum operator and position of the i th electron,
m is the electron’s mass, and ω is the angular frequency of the parabolic confining potential. If
we introduce the centre-of-mass (CM) and relative motion coordinates:

XC = x1 + x2

2
; P̂C = p̂1 + p̂2; x = x1 − x2; p̂ = p̂1 − p̂2

2
, (4)

the Hamiltonian decouples and can be written as Ĥ = ĤC + Ĥr, where ĤC and Ĥr are

ĤC = P̂2
C

2M
+ M

2
ω2 X2

C, (5)

and

Ĥr = p̂2

2µ
+ µ

2
ω2x2 + Vδ(|x |), (6)

where M = 2m is the total mass and µ = m/2 is the reduced mass. As a result, the
wavefunction for two interacting electrons in a 1D parabolic quantum dot can be written as
�(x1, x2) = �C(XC)�r(x), where �C(XC) and �r(x) are, respectively, the CM and relative
motion wavefunctions. The eigenfunctions and eigenenergies of the CM Hamiltonian are well
known:

�C(XC) = NnC exp

(
−α

2
C X2

C

2

)
HnC(αC XC), (7)

EnC = h̄ω
(
nC + 1

2

) ; nC = 0, 1, . . . , (8)

where NnC =
√

αC√
π2nC nC! is a normalization constant, αC =

√
Mω
h̄ = √

2α, where α = √
mω/h̄

and HnC(αC XC) are Hermite polynomials.
Since the truncated Coulomb potential does not affect the CM motion, the problem

reduces to the calculation of the eigenenergies and eigenfunctions of the relative motion
Hamiltonian. This task is accomplished by using the exact numerical diagonalization method.
As basis functions to expand the (unknown) relative motion wavefunction, we use relative
motion harmonic oscillator states and write �r(x) = ∑M

n=0 cnψn(x), where cn are (unknown)

expansion coefficients and ψn(x) = Nn exp
(
− α2

r x2

2

)
Hn(αrx) are the exact eigenstates of

the Hamiltonian in equation (6) when Vδ(|x |) is set to zero, Nn =
√

αr√
π2nn! , and αr =

√
µω

h̄ = α/
√

2. The minimization of the energy functional, 〈Ĥr〉, with respect to the expansion

coefficients gives, as an end result, a matrix eigenvalue–eigenvector problem. The matrix to be
diagonalized is of the form 〈n|Ĥr|n′〉, where n, n′ = 0, 1, . . .M and M is the largest quantum
number of the harmonic oscillator basis states.

In dimensionless units, the relative motion Hamiltonian matrix elements are

hnn′ = 〈n|Ĥr|n′〉
(h̄ω)

=
(

n + 1

2

)
δnn′ + λr Inn′√

π2n+n′n!n′! , (9)

where

Inn′ =
∫ ∞

−∞
dt e−t2

Hn(t)Hn′(t)
1

√
t2 + (αrδ)2

, (10)
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Figure 1. Plot of the dimensionless truncated Coulomb potential, vδ(|x|) = Vδ(|x|)/(h̄ω), as a
function of (αrx) for λr = 1 and truncation parameters (αrδ)

2 = 0.01 (solid line), (αrδ)
2 = 0.10

(dashed line) and (αrδ)
2 = 1.00 (dotted line). The parameter αr =

√
µω
h̄ = α/

√
2 has the

dimensionality of an inverse length.

and t = αr x is a dimensionless variable introduced to facilitate the integration of integrals. The
dimensionless parameter λr = e2αr/(h̄ω) measures the strength of the Coulomb correlation
relative to the confinement energy. In dimensionless units, the truncated Coulomb potential has
the form

vδ(|x |) = Vδ(|x |)
h̄ω

= λr√
(αrx)2 + (αrδ)2

; λr = e2αr

(h̄ω)
. (11)

In figure 1 we plot the dimensionless truncated Coulomb potential, vδ(|x |) for λr = 1 as a
function of (αrx) for three different values: (αrδ)

2 = 0.01, 0.10 and 1.00.
For any of the above mentioned values of (αrδ)

2, we select a set of λr and build sufficiently
large hnn′ matrices consisting of (M + 1) × (M + 1) elements. We diagonalize the relative
motion Hamiltonian using standard numerical methods and the results obtained for finite values
of M are extrapolated to the M → ∞ limit. For given values of (αrδ)

2 and λr, the smallest of
the energies is identified as the ground state energy of the relative motion Hamiltonian.

It can be proved that, any time that the basis set is enlarged, the eigenvalues of the larger
matrix are lower in energy than the corresponding eigenvalues of the smaller matrix. For
example, the ground state energy corresponding to the (M + 1) × (M + 1) matrix is lower
than the ground state energy of the M × M matrix, which is lower than the ground state energy
resulting from a (M − 1)× (M − 1) matrix, etc. Since we are using a basis that preserves the
linearity of the eigenproblem, the leading error as M → ∞ is proportional to 1/M . Therefore,
in the M → ∞ limit a function of the form c0 + c1/M will accurately fit the εr(M) energies,
obtained for large M . In reality, one has always to deal with a finite basis set (matrix). In
such a case, there are two possible ways to extrapolate the results in the M → ∞ limit. When
matrix eigenvalues are calculated from matrices that are not very large, a quadratic (in 1/M)
function of the form c0 + c1/M + c2/M2 should be used and will fit the data better. When
matrix eigenvalues correspond to large matrices (large basis sets) a linear function of the form
c0 + c1/M should be used to fit the data (one should not use in this fit the data corresponding to
the smaller matrices). Both extrapolation methods should give practically the same result in the
M → ∞ limit; however, the first method is less time consuming. The extrapolation procedure
for the relative motion energies in the M → ∞ limit is illustrated in figure 2, where we show
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Figure 2. Relative motion ground state energies, εr, versus 1/M for (αrδ)
2 = 0.01 and λr = 1

obtained from the diagonalization procedure (dots). Top: when the adopted basis set is not very
large (M = 40, 50, . . . , 100), a quadratic (in 1/M) function, 2.370 32 + 0.003 143 02/M +
0.728 713/M2, is the best fit of the diagonalization data (solid line). Bottom: when only large basis
sets are considered (M = 100, . . . , 300), a linear (in 1/M) function, 2.370 32+0.001 028 57/M, is
the best fit of the diagonalization data (solid line). Both linear and quadratic extrapolation functions
give the same extrapolated value in the M → ∞ limit.

the relative motion ground state energies, εr corresponding to the system with (αrδ)
2 = 0.01

and λr = 1 (dots) and the two (top and bottom) fitting functions (solid lines). One can see
that both linear and quadratic extrapolation functions give the same extrapolated value in the
M → ∞ limit. The same procedure is applied to all other cases.

The smoother the potential, smaller the basis set needed to achieve the desired accuracy.
For potentials that are not very smooth (primarily small αrδ, but to some extent also larger λr)
a larger value of M is needed to guarantee the same accuracy as for the smoother potential.

In figure 3 we show the ten lowest relative motion energies, εr = 〈Ĥr〉/(h̄ω), for
(αrδ)

2 = 0.01 as a function of λr for values of λr = 0, 0.5, 1, 1.5 and 2. The λr = 0 result
corresponds to the energy spectrum of an unperturbed 1D harmonic oscillator. Since the height
of the barrier at x = 0 is vδ(0) = λr/

√
(αr δ)2 = 10λr for (αr δ)

2 = 0.01, some of the excited
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Figure 3. Plot of ten lowest relative motion energies, εr = 〈Ĥr〉/(h̄ω) for (αrδ)
2 = 0.01 and

λr = 0, 0.5, 1, 1.5 and 2. The solid lines represent the height of the barrier, vδ(0) for λr = 0.5 and
1.0.

state energies appearing in figure 3 (for instance the energies εr > 5 for λr = 0.5) correspond
to delocalized states.

It is interesting to note that, as the strength of the Coulomb correlation increases, the
energy levels converge into doublets. The numerical diagonalization results show that the
energies of each doublet become degenerate in the limit of very strong repulsion. This type
of behaviour happens for all considered truncation parameters, though it is more pronounced
for the smallest truncation parameter (αrδ)

2 = 0.01, which corresponds to the highest peak of
truncated Coulomb potential at the origin. For larger values of the truncation parameter, we
need larger values of λr to see the doublet creation. In what follows, we focus our attention on
the case (αrδ)

2 = 0.01, where the effects are clearly more visible.
The fact that doublet energies of two different states coincide in the limit of strong

repulsion appears puzzling at first given that, in 1D, space symmetric and antisymmetric
eigenstates alternate. If �n=0(x) represents the wave function for the lowest energy state of
the doublet, it should be space symmetric and, as a result, the wavefunction of the other higher
energy state of the doublet, �n=1(x), should be space antisymmetric. However, despite the
different symmetry of the states, the diagonalization results show that in the limit of very strong
repulsion both have the same energy. This can be explained only if one assumes that, in the
limit of very strong repulsion, the symmetric state of each doublet transforms into the mirror
reflection of the antisymmetric state of that doublet. Namely, �n=0(x) → |�n=1(x)| in the
limit of very strong repulsion and same applies to all doublet states. We can intuitively reach
the same conclusion if we recall that symmetric states (such as n = 0) are nodeless at the origin,
but antisymmetric states (such as n = 1) have nodes there. Because a very strong truncated
Coulomb potential is peaked at x = x1 − x2 = 0, such a potential will affect the symmetric
state much more than the antisymmetric one. The resulting effect would the appearance of a
node-like drop of the symmetric wavefunction at x = x1 − x2 = 0, something resembling the
existing node of the antisymmetric state at x = x1 − x2 = 0. Therefore, in the strong repulsion
limit, the symmetric wavefunction of each doublet becomes identical to the absolute value of
the antisymmetric wavefunction of that doublet.

The developing node-like drop of the symmetric wavefunction at x = x1 − x2 = 0 is
clearly seen in the diagonalization results for the ground state relative motion wavefunction.
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Figure 4. Relative motion ground state wavefunction (full line) for two interacting electrons in a 1D
parabolic quantum dot for a truncated Coulomb potential with truncation parameter (αrδ)

2 = 0.01
and several values of the dimensionless parameter λr = e2αr/(h̄ω). The curve (full line) with
the largest value at the origin corresponds to λr = 0.0, and in decreasing order the curve (full
line) with the smallest value at the origin corresponds to λr = 2.0. The dashed line represents the
absolute value of the relative motion first excited state wavefunction for λr = 2.0. The parameter
αr = √

µω/h̄, where µ is the reduced mass, has the dimensionality of an inverse length.

The full lines in figure 4 represent the ground state wavefunction for the relative motion
of two interacting electrons in a 1D parabolic quantum dot with a truncation parameter:
(αrδ)

2 = 0.01 and values of λr = 0.0, 0.1, 0.3, 0.5, 1.0, and 2.0. The dashed line represents the
absolute value of the first excited state wavefunction for the relative motion when λr = 2.0. It
is apparent that, even for λr = 2.0, the ground state relative wavefunction is not much different
from the absolute value of the first excited state (with minor differences only for small x). In the
λr → ∞ limit, the two states become identical. As the strength, λr, of the Coulomb correlation
increases, the ground state wavefunction of the relative motion (that is Gaussian for λr = 0.0;
noninteracting electrons) gradually transforms into a two-peaked wavefunction, where the two
electrons are separated in opposite sides of a two-well potential that has the finite truncated
Coulomb potential as a barrier in the middle at x = 0.

The degeneracy between ε0 (ground state) and ε1 (first excited state) as a function of λr

can be affected by tuning the parameter αrδ. For larger αrδ, for instance (αrδ)
2 = 0.1 versus

0.01, the values of λr have to be bigger to see similar doublets. This can be clearly seen by
comparing figure 4 with 5, where for the same λr the doublet structure is more pronounced for
(αrδ)

2 = 0.01 than for (αrδ)
2 = 0.1. Obviously, for larger values of αrδ the relative coordinate

double-well potential (resulting from the parabolic confinement and Coulomb repulsion) is
weaker at the centre, therefore a larger Coulomb repulsion is needed to separate the pair of
electrons.

The total (dimensionless) energy of the two interacting electrons in the 1D parabolic
quantum dot, ε = 〈Ĥ 〉/(h̄ω), is ε = εr + εCM, where εCM = 〈ĤCM〉/(h̄ω) = (nC + 0.5)
and εr = 〈Ĥr〉/(h̄ω) is obtained from the diagonalization procedure.

In particular, the sum of CM ground state energy (εCM = 0.5) and relative motion ground
state energy gives the exact numerical diagonalization value of the ground state energy for two
interacting electrons in a 1D parabolic quantum dot that is shown in table 1 for given values
of λr (first column) at (αrδ)

2 = 0.01, 0.10 and 1.00. All reported values are extrapolations of
finite diagonalization results in the M → ∞ limit.
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Figure 5. The same as in figure 4, but for (αrδ)
2 = 0.1.
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Figure 6. Exact numerical diagonalization (diag) ground state energies, ε = 〈Ĥ〉/(h̄ω), for two
interacting electrons in a 1D parabolic quantum dot, for values of parameter λr = e2αr/(h̄ω)
from zero to five. The truncation parameters are respectively (αrδ)

2 = 0.01, 0.10 and 1.00. The
parameter αr = √

µω/h̄, where µ is the reduced mass, has the dimensionality of an inverse length.

When the total ground state diagonalization energies are compared to first-order
perturbation theory results, ε(1) = 1.0 + λr I00/

√
π , it becomes clear that the perturbation

theory is reliable only for very small values of λr. For larger values, typically λr > 1, first-
order perturbation theory is inaccurate. Within the framework of first-order perturbation theory,
energies increase linearly with λr and as a consequence for λr > 1 they are much higher than
the diagonalization values.

In figure 6 we plot the dimensionless ground state energy, ε = 〈Ĥ 〉/(h̄ω), as a function
of the dimensionless Coulomb interaction parameter, λr = e2αr/(h̄ω) for values of λr ranging
from zero (no Coulomb repulsion) up to λr = 5.

If the potential barrier created by the potential shown in figure 1 were of infinite height,
the two ‘wells’ of the resulting relative motion potential would be totally ‘disconnected’ and
the energy spectrum would have consisted of the same set of energy eigenvalues in each well.
Thus, each relative motion energy eigenvalue would be doubly degenerate and the relative
motion eigenfunctions for a given energy would be linear combinations of �R(x) and �L(x),
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Table 1. Exact numerical diagonalization ground state energies, ε = 〈Ĥ 〉/(h̄ω) for two interacting
electrons in a 1D parabolic quantum dot in terms of the dimensionless parameter, λr = e2αr/(h̄ω)
(first column) for a truncated Coulomb potential, with truncation values (αrδ)

2 = 0.01, 0.10 and
1.00 (second to fourth columns). The parameter αr = √

µω/h̄, where µ is the reduced mass, has
the dimensionality of an inverse length. The statistical uncertainty in the last two digits of energy is
shown in parenthesis.

λr (αrδ)
2 = 0.01 (αrδ)

2 = 0.10 (αrδ)
2 = 1.00

0.0 1.000 00 1.000 00 1.000 00
1.0 2.870(32) 2.578(90) 1.850(42)
2.0 3.792(55) 3.640(95) 2.677(59)
3.0 4.527(20) 4.430(56) 3.473(09)
4.0 5.180(14) 5.103(68) 4.226(34)
5.0 5.781(09) 5.713(48) 4.927(18)

which would vanish identically for x � 0 and x � 0, respectively, in the right (R) and left (L)
side of the potential barrier.

The space separation of the two electrons leads to the formation of 1D Wigner molecules
similar in nature to the Wigner-type arrangement of electrons in a 1D infinite square well in the
dilute limit (ρ = N/L → 0) [33].

With a finite barrier, as in the present case, there is coupling between the two ‘wells’; as
a result the degeneracy is removed, and the relative motion energy levels split into doublets.
In what follows, we shall focus our attention on the lowest doublet, which will be treated as
a two-level system. Within the Heitler–London framework, one could approximate the two
relative motion wavefunctions of the doublet as

|�±〉 = |1〉|2〉 ± |2〉|1〉
√

2(1 ± S2)
, (12)

where |1〉 and |2〉 represent one-particle orbitals centred around a left well at x = −a and
around a right well at x = +a. The symmetric wavefunction, |�+〉, corresponds to the lower
energy of the doublet, while the antisymmetric wavefunction, |�−〉, corresponds to the higher
energy. The left and right orbitals overlap and S = 〈1|2〉 = 〈2|1〉 denotes their overlap
integral. Using ground-state harmonic oscillator orbitals one finds S = exp(− (α d)2

4 ), where
d = 2a is some mean inter-electron distance. Obviously, the symmetric function corresponds
to a spin-singlet state, while the antisymmetric one corresponds to a spin-triplet state. The
energy splitting of the doublet,�E = Etriplet − Esinglet, is associated with the exchange energy,
J (d) = �E , which in principle should be highly sensitive to the mean inter-electron distance.
The spin dynamics of the system is then described by a Heisenberg spin Hamiltonian of the
form

Ĥspin = J (d)�S1 �S2, (13)

which favours antiparallel spins if J (d) is positive and parallel spins if J (d) is negative. In
the following we present a simple idea on how to achieve a high-sensitivity switching of the
spin–spin interaction between the electrons, by means of a static inhomogeneous electric field.
Differently from a static homogeneous electric field, a static inhomogeneous electric field
couples to both CM and relative motion, therefore influences the mean separation between
the electrons and as a result varies the exchange coupling between the two spins. To have an
observable effect, one needs to apply static inhomogeneous electric fields that are non-uniform
over distances smaller than or of the same order of magnitude as the size of the 1D parabolic
quantum dot. From the experimental point of view, the challenging task is to fabricate a few-
electron quantum dot which has a rather large λr where the doublets are realized. Let us assume
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that, when these conditions are satisfied, the main effect of the static inhomogeneous electric
field is to increase the mean distance between the two electrons from d to some value d ′ (>d).
Since the overlap and exchange coupling are exponentially sensitive to the inter-electron
distance, it is expected that both overlap and exchange coupling will decrease exponentially as
the relative distance between the two electrons increases. Clearly, it is the static inhomogeneous
electric field that tunes the value of the exchange coupling between the spins. At zero electric
field the exchange coupling is ‘on’, but as soon as a static inhomogeneous electric field is
applied the exchange coupling should decrease exponentially to the ‘off’ state, resulting in a
high-sensitivity switching of the spin–spin interactions between a pair of electrons.

In [34] it was suggested that in vertically tunnel-coupled quantum dots the switching of
spin–spin interactions can be achieved by using a static homogeneous electric field. Vertically
tunnel-coupled quantum dots are essentially 3D structures where two electrons are confined
in two different traps (ω1 �= ω2) and they are spatially separated in the vertical direction. It
is clear that, because of the difference in confinement parameters, even a static homogeneous
electric field affects the relative motion of the two electrons in that case. Differently from that
example, the quantum dot under our consideration has a 1D structure and the two electrons
are confined in the same trap, that has frequency ω. Therefore, in our case, we need to use a
static inhomogeneous electric field in order to affect the relative motion of the two electrons
and consequently change their spin–spin exchange coupling. A uniform static homogeneous
electric field couples to the CM motion only, therefore it does not affect the energy splitting of
the doublet and cannot be used as a tool to switch spin–spin interactions in our case.

The 1D parabolic quantum dot considered in this work resembles the ammonia (NH3)
molecule. The truncated Coulomb potential between the two electrons in the dot creates the
separating barrier, which is similar to the barrier for the N atom created by the Coulomb
repulsion between the N nucleus and the three protons of H. Similarly, the ‘left’ and ‘right’
electronic states are similar to the ‘up’ and ‘down’ states of the vibrational motion of the N
atom in the NH3 molecule. Based on this analogy we speculate on the possibility that a device
similar to an ammonia maser [35] may be built out of these parabolic quantum dots.

In conclusion, we considered two interacting electrons in a 1D parabolic quantum dot and
solved the problem by using the exact numerical diagonalization technique. We consider a
truncated Coulomb potential between the two electrons, where the truncation parameter serves
to regularize the behaviour of the bare Coulomb potential in 1D. We report the dependence of
ground state and excited state energies as a function of electronic correlations relative to the
confinement energy for several values of the truncation parameter. We present a simple idea on
how to achieve a high-sensitivity switching of the spin–spin interaction between the electrons,
by means of a static inhomogeneous electric field, and point out the similarity of this system to
the ammonia molecule.
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[16] Harju A, Siljamäki S and Nieminen R M 2002 Phys. Rev. B 65 075309
[17] Ekert A and Jozsa R 1996 Rev. Mod. Phys. 68 733
[18] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[19] DiVincenzo D P 1995 Phys. Rev. A 51 1015
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